Detecting Structural Metadata with Decision Trees and Transformation-Based Learning
نویسندگان
چکیده
The regular occurrence of disfluencies is a distinguishing characteristic of spontaneous speech. Detecting and removing such disfluencies can substantially improve the usefulness of spontaneous speech transcripts. This paper presents a system that detects various types of disfluencies and other structural information with cues obtained from lexical and prosodic information sources. Specifically, combinations of decision trees and language models are used to predict sentence ends and interruption points and, given these events, transformationbased learning is used to detect edit disfluencies and conversational fillers. Results are reported on human and automatic transcripts of conversational telephone speech.
منابع مشابه
Combining decision trees and transformation-based learning to correct transferred linguistic representations
We present a hybrid machine learning approach to correcting features in transferred linguistic representations in machine translation. The hybrid approach combines decision trees and transformation-based learning. Decision trees serve as a filter on the intractably large search space of possible interrelations among features. Transformation-based learning results in a simple set of ordered rule...
متن کاملAutomated structural classification of lipids by machine learning
MOTIVATION Modern lipidomics is largely dependent upon structural ontologies because of the great diversity exhibited in the lipidome, but no automated lipid classification exists to facilitate this partitioning. The size of the putative lipidome far exceeds the number currently classified, despite a decade of work. Automated classification would benefit ongoing classification efforts by decrea...
متن کاملبررسی کارایی مدل درختان تصمیمگیری در برآورد رسوبات معلق رودخانهای (مطالعه موردی: حوضه سد ایلام)
The real estimation of the volume of sediments carried by rivers in water projects is very important. In fact, achieving the most important ways to calculate sediment discharge has been considered as the objective of the most research projects. Among these methods, the machine learning methods such as decision trees model (that are based on the principles of learning) can be presented. Decision...
متن کاملKnowledge Based Analysis of Various Statistical Tools in Detecting Breast Cancer
In this paper, we study the performance criterion of machine learning tools in classifying breast cancer. We compare the data mining tools such as Naïve Bayes, Support vector machines, Radial basis neural networks, Decision trees J48 and simple CART. We used both binary and multi class data sets namely WBC, WDBC and Breast tissue from UCI machine learning depositary. The experiments are conduct...
متن کاملReachability checking in complex and concurrent software systems using intelligent search methods
Software system verification is an efficient technique for ensuring the correctness of a software product, especially in safety-critical systems in which a small bug may have disastrous consequences. The goal of software verification is to ensure that the product fulfills the requirements. Studies show that the cost of finding and fixing errors in design time is less than finding and fixing the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004